

Institute of Technical Automation and Information Technologies Кафедра "Cybersecurity, information processing and storage"

EDUCATIONAL PROGRAM

"7M06301 - Comprehensive information security"

(the cipher and the name of the educational program)

Code and classification of the field of education: 7M06 Information and communication technologies

Code and classification of training areas: 7M063 Information Security

Group of educational programs: M095 Information Security

NRK Level: 7 ORC Level: 7

Duration of study: 2 years Volume of credits: 120 credits

Almaty 2022

The educational program "7M06301 - Comprehensive information security" was approved at a meeting of the Academic Council of KazNTU named after K.I.Satpayev.

Protocol No. 13 of "28" __04__2022

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of Kazntu named after K.I.Satpayev.

Протокол № 7 от "26" _04_2022 г.

The educational program "7M06301 - Comprehensive information security " was developed by the academic committee in the direction "7M063 Information security"

Full name	Academic degree/ academic title	Position, course	Place of work, contact phone number.	Signatur
Т	he cipher an	d the name of the educa	itional program	
Chairman:				
Satybaldiyeva R. Zh .	C.t.s.	Head of the Department, Associate Professor	Satbayev University, fon. 70-60	Gafa
Teaching staff:				
Aitkhozhaeva E.Zh.	C.t.s., docent	Associate Professor	Satbayev University, Tel. 73-61	Maixo
Kaziev G.Z.	D.t.s.	Professor	Satbayev University, Tel. 73-61	Thay-
Shukaev D.N.	D.t.s.	Professor	Satbayev University, Tel. 73-61	pur
Zhumagaliev B.I.	C.t.s., docent	Associate Professor	Satbayev University, Tel. 73-61	The
Employers:				
Konuspaev A.T.	C.p.and v.s.	President	Association of Innovative Companies of FEZ "PIT"	AKI
Pokusov V.V.		Председатель	Казахстанская Ассоциация Информационной безопасности	Nayel
Mamyrbayev O.Zh.	PhD, Associate Professor	Deputy General Director	RSE "Institute of Information and Computing Technologies"	51
Students				
Kapysh Nurseit Talgatovich		2 course	Satbayev University, 87714521579	Kums

Table of contents

1.	Description of the educational program	4								
2.	The purpose and objectives of the educational program	5								
3.	Requirements for evaluating the learning outcomes of an 6									
	educational program									
4.	1 0									
4.1.	General information	6								
4.2.	The relationship between the achievability of the formed learning	16								
	outcomes according to the educational program and academic									
	disciplines									
5.	Curriculum of the educational program	24								

1. Description of the educational program

The educational program is aimed at training undergraduates in the scientific and pedagogical direction. The program includes basic and specialized disciplines with the achievement of relevant competencies, as well as the passage of various types of practices (research, teaching and internships).

The professional activity of the masters is aimed at the field of information protection and security, namely, comprehensive information security and engineering and technical protection of information.

The training of masters of the scientific and pedagogical direction in information security will be carried out according to the updated educational program (OP) "Integrated information security". The programs of disciplines and modules of the educational program have an interdisciplinary and multidisciplinary nature, are developed taking into account the relevant educational programs of the world's leading universities and the international classifier of professional activity in the field of information security.

The educational program ensures the application of an individual approach to students, the transformation of professional competencies from professional standards and qualification standards into learning outcomes and ways to achieve them.

The educational program was developed on the basis of an analysis of the labor functions of an information security administrator, an information security auditor, and an information security engineer stated in professional standards.

The main criterion for the completion of master's degree programs is the development of all types of educational and scientific activities of a graduate student.

In case of successful completion of the full course, the student is awarded the degree of Master of Technical Sciences in the educational program "Integrated Information Security".

A graduate can perform the following types of work:

- design and engineering;
- production and technological;
- experimental research;
- organizational and managerial;
- operational;
- scientific research.

Representatives of Kazakhstani companies and associations, specialists of departmental structures in the field of protection and security participated in the development of the educational program.

2. Purpose and objectives of educational program

Purpose of the OP: The purpose of the educational program is to train specialists in the field of infocommunication technologies and information security technologies (electronic digital signature, identification infrastructure, protection of network protocols, antivirus protection, content filtering, etc.).

OP tasks:

Training of highly qualified specialists who are able to solve the following tasks:

- planning of information security audit work;
- organizational support of information security audit;

- analysis of compliance of design, operational and technical documentation on information security with the requirements in the field of ICT and information security of the object of information security audit;
 - analysis of the current security status of the IB audit object;
 - identification and elimination of vulnerabilities;
 - monitoring and investigation of information security incidents;
 - development of a model of information security threats in enterprises;
- development of technical specifications for the creation of an information security system.

The Master of the educational program "Integrated Information Security" is focused on the independent determination of the purpose of professional activity and the choice of adequate methods and means to achieve them, the implementation of scientific, innovative activities to obtain new knowledge. In addition, it is focused on the organization, design, development, management and audit of information protection and security systems for applied purposes for all sectors of the economy, government organizations and other fields of activity.

The program is designed to implement the principles of the democratic nature of education management, expand the boundaries of academic freedom and the powers of educational institutions, which will ensure the training of qualified, highly motivated personnel for innovative and knowledge-intensive sectors of the economy.

The educational program ensures the application of an individual approach to students, the transformation of professional competencies from professional standards and qualification standards into learning outcomes and ways to achieve them.

The educational program was developed on the basis of an analysis of the labor functions of an information security administrator, an information security auditor, and an information security engineer stated in professional standards.

Representatives of Kazakhstani companies and associations, specialists of departmental structures in the field of protection and security participated in the development of the educational program.

3. Requirements for evaluating the educational program learning outcomes

The requirements for the master's degree level are determined on the basis of the Dublin descriptors of the second level of higher education (Master's degree) and reflect the acquired competencies expressed in the achieved learning outcomes.

Learning outcomes are formulated both at the level of the entire master's degree program and at the level of individual modules or academic discipline.

A graduate who has mastered master's degree programs must have the following general professional competencies:

the ability to independently acquire, comprehend, structure and use new knowledge and skills in professional activities, develop their innovative abilities;

- the ability to independently formulate research goals, establish the sequence of solving professional tasks;
- the ability to apply in practice the knowledge of fundamental and applied sections of disciplines that determine the orientation (profile) of the master's degree program;

- the ability to professionally choose and creatively use modern scientific and technical equipment to solve scientific and practical problems;
- the ability to critically analyze, present, defend, discuss and disseminate the results of their professional activities;
- proficiency in the preparation and execution of scientific and technical documentation, scientific reports, reviews, reports and articles;
- willingness to lead a team in the field of their professional activities, tolerantly perceiving social, ethnic, confessional and cultural differences;
- readiness to communicate orally and in writing in a foreign language to solve the tasks of professional activity.

A graduate who has mastered the master's degree program must have professional competencies corresponding to the types of professional activities that the master's degree program is focused on:

research activities:

- the ability to form diagnostic solutions to professional problems by integrating the fundamental sections of sciences and specialized knowledge obtained during the development of the master's degree program;
- the ability to independently conduct scientific experiments and research in the professional field, generalize and analyze experimental information, draw conclusions, formulate conclusions and recommendations;
- the ability to create and explore models of the studied objects based on the use of in-depth theoretical and practical knowledge in the field of information protection and security;
 - scientific and production activity:
- the ability to independently carry out production and scientific-production, laboratory and interpretive work in solving practical problems;
- the ability to professionally operate modern laboratory equipment and devices in the field of the master's degree program;
- the ability to use modern methods of processing and interpreting complex information to solve production problems;
 - project activities:
- the ability to independently compile and submit projects of research and scientific-production works in the field of information security;
- readiness to design complex research and scientific-production works in solving professional tasks;
 - organizational and managerial activity:
- readiness to use practical skills in organizing and managing research and scientific-production works in solving professional tasks;
- readiness for the practical use of regulatory documents in the planning and organization of scientific and production work in the field of information security

scientific and pedagogical activity:

- ability to conduct seminars, laboratory and practical classes;
- the ability to participate in the management of scientific and educational work of students in the field of information security.

4. Passport of educational program

4.1. General information

No	Field name	Note
1	Code and classification of the field of	7M06 Information and Communication Technologies
	education	
2	Code and classification of training areas	7M063 Information security
3	Group of educational programs	M095 Information security
4	Name of the educational program	7M06301 - Comprehensive information security
5		The professional activities of graduates include:
	program	science, education, state and departmental structures,
		the economy and industry of the state, the field of
		healthcare.
		The objects of professional activity of graduates of
		master's degree programs in the educational program -
		"Integrated information security" are:
		– public administration bodies;
		- information security departments and departments
		of departmental organizations;
		- information security departments, IT departments
		and departments of financial organizations;information security departments, IT departments
		and departments of industrial enterprises;
		higher educational institutions and scientific
		institutions;
		departments and departments of information
		security of state organizations and commercial
		structures.
		The main functions of the professional activity of
		undergraduates are: conducting research in the field of
		information security and security; audit, vulnerability
		analysis and investigation of incidents in information
		security systems; design, implementation, operation,
		administration, maintenance and testing of
		information security systems of enterprises.
		Areas of professional activity, the following:
		- design, development, implementation and operation
		of information security systems;
		- analysis, testing and identification of system
		vulnerabilities;
		- information security audit.
6	The purpose of the Educational	e i
	program	infocommunication technologies and information
		security technologies (electronic digital signature,
		identification infrastructure, protection of network
7	Type of adventional program	protocols, antivirus protection, content filtering, etc.).
8	Type of educational program The level of the NRK	Updated educational program 7
9	ORC Level	7
10		-
10	Educational program	The program is focused on training professional specialists in the field of information security
	Luucanonai program	specialists in the field of information security

$\overline{}$			
			management. Unlike the existing educational
			programs in the field of information security, it is
			planned to actively expand the graduate's training
			towards the use of world practice and information
			security standards, which will provide him with
			advanced training.
11	List of competencies	of tl	ne Requirements for the key competencies of graduates
	educational program:	01 (1	of the scientific and pedagogical Master's degree,
	educational program.		must:
			1) have an idea:
			– on the role of science and education in public life;
			– about current trends in the development of scientific
			knowledge;
			 on current methodological and philosophical
			problems of natural (social, humanitarian, economic)
			sciences;
			– about the professional competence of a high school
			teacher;
			– contradictions and socio-economic consequences of
			globalization processes;
			– on professional competence in the field of
			=
			information protection and security;
			 about the technology of virtualization of resources
			and platforms;
			– on the intellectualization of information security
			tools;
			- about database protection technologies;
			 about cryptographic information protection
			algorithms;
			– about big data analysis.
			2) know:
			- methodology of scientific knowledge;
			 principles and structure of the organization of
			scientific activity;
			psychology of cognitive activity of students in the
			learning process;
			– psychological methods and means of improving the
			effectiveness and quality of training;
			– algorithms for cryptographic protection of
			information;
			- information security standards and IT security
			assessment criteria;
			- resource and platform virtualization technologies and
			virtualization systems from leading manufacturers;
			- threats and risks of virtualization systems, principles
			of building hypervisors and their vulnerabilities;
			- organization of IP networks, structure of IP packets
			and IP protocols;
			– internal organization of OS media;
			 methods and means of storing key information and
I			I 4
			encryption; – varieties and principles of authentication;

- requirements for firewalls and intrusion detection systems;
- database protection technologies and methods of designing secure databases;
- organization of the database protection and security system;
- methods and tools of active audit;
- engineering and technical protection of information.3) be able to:
- to use the acquired knowledge for the original development and application of ideas in the context of scientific research;
- critically analyze existing concepts, theories and approaches to the analysis of processes and phenomena;
- integrate knowledge gained in different disciplines to solve research problems in new unfamiliar conditions;
- by integrating knowledge to make judgments and make decisions based on incomplete or limited information;
- apply the knowledge of pedagogy and psychology of higher education in their teaching activities;
- apply interactive teaching methods;
- to carry out information-analytical and informationbibliographic work with the involvement of modern information technologies;
- to think creatively and creatively approach the solution of new problems and situations;
- be fluent in a foreign language at a professional level, which allows conducting scientific research and teaching special disciplines in universities;
- to summarize the results of research and analytical work in the form of a dissertation, a scientific article, a report, an analytical note, etc.;
- to apply algorithms for cryptographic protection of information;
- apply IS standards and conduct an IT security assessment;
- apply virtualization systems from leading manufacturers;
- identify threats and risks of virtualization systems;
- apply methods and means of storing key information and encryption;
- work with firewalls and intrusion detection systems;
- apply database protection technologies and secure database design methods;
- organize a database protection and security system;
- apply methods and tools of active audit;
- apply big data analysis tools.
- 4) have skills:
- research activities, solutions of standard scientific

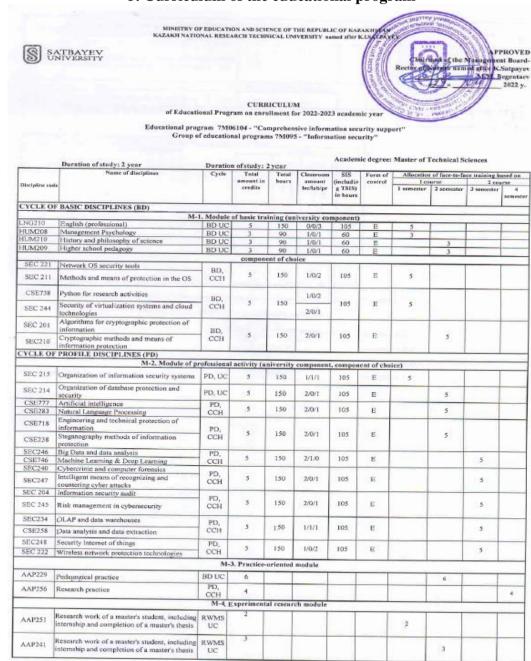
		tasks;
		 implementation of educational and pedagogical activities on credit technology of training;
		 methods of teaching professional disciplines;
		- the use of modern information technologies in the
		educational process;
		 professional communication and intercultural
		communication;
		 oratory, correct and logical formalization of their
		thoughts in oral and written form;
		 organization and protection of database security;
		 conducting an information security audit;
		 application of algorithms for cryptographic
		protection of information;
		identifying threats and countering them;
		- working with Big Data;
		 expanding and deepening the knowledge necessary
		for daily professional activities and continuing
		education in doctoral studies.
		5) be competent:
		- in the field of research methodology;
		- in the field of scientific and scientific-pedagogical
		activity in higher educational institutions;
		 in matters of modern educational technologies;
		- in the implementation of scientific projects and
		research in the professional field;
		– in the organization of information security systems;
		 in conducting an information security audit;
		- in ensuring the information security of the
		organization;
		- in ways to ensure constant updating of knowledge,
		expansion of professional skills and abilities.
12	Learning outcomes of the educational	ON1 Have the ability to formulate research goals
	program:	independently, establish the sequence of solving professional tasks.
		ON2 Have professional competencies to create and
		research a model of the objects under study based on
		the use of in-depth theoretical and practical knowledge
		in the field of information security and security.
		ON 3 The ability to design complex research and
		scientific-production works in solving professional
		problems. Proficiency in foreign languages at a
		professional level.
		ON 4 Readiness for the practical use of regulatory
		documents in the planning and organization of
		scientific and production work in the field of
		information security. To know the current and
		promising trends in the development of cryptographic
		information protection and apply it in practice.
		ON 5 Understand philosophical questions of science,
		the main historical stages of the development of
	1	science, be able to critically evaluate and analyze

		scientific and philosophical problems, understand the specifics of engineering science, possess analytical thinking skills. Be competent in psychology and pedagogy. ON 6 Be able to organize a database protection and security system and apply database protection technologies, know modern and promising directions for the development of cryptographic information protection and apply it in practice. ON 7 Be able to assess the security of network operating systems. It is safe to use modern virtualization technologies. Know and apply methods and tools for conducting an information security audit. ON 8 Be competent in the detection of cybercrime and computer forensics. Be able to use the means of recognizing and countering cyber attacks. ON 9 Know the technical means and methods of technical protection of information, be competent in the organization of engineering and technical
		protection of information. ON 10 Be able to analyze big data, know the methods
		and tools of big data analysis. Ability to formulate
12	Forms of training	problems, tasks and methods of scientific research.
	Form of training Duration of training	full - time
	Volume of loans	2 years 120 credits
	Languages of instruction	Kazakh, Russian, Master of Technical Sciences
	Academic degree awarded	
18	Developer(s) and authors:	Aitkhozhaeva E.Zh.,
		Begimbayeva E.E.,
		Satybaldieva R.Zh., Yubuzova H.I.
		I UUUZOVA II.I.

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

№	Name of the	Brief description of the discipline	Number			Genera	ated lear	ning out	comes (c	odes)			
	discipline		of credits	ON1	ON2	ON3	ON4	ON5	ON6	ON7	ON8	ON9	ON10
			basic disci										
			sity compo	nent		,							
1	English (professional)	The course is designed for undergraduates of technical specialties to improve and develop foreign language communication skills in the professional and academic field. The course introduces students to the general principles of professional and academic intercultural oral and written communication using modern pedagogical technologies (round table, debates, discussions, analysis of professionally-oriented cases, design). The course ends with a final exam. Undergraduates also need to study independently (MIS).	5			v							
2	science	The subject of philosophy of science, dynamics of science, specifics of science, science and pre-science, antiquity and the formation of theoretical science, the main stages of the historical development of science, features of classical science, non-classical and post-non-classical science, philosophy of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of science, social and moral responsibility of a scientist and engineer.	3					v					
3	pedagogy	The course is intended for undergraduates of the scientific and pedagogical magistracy of all specialties. As part of the course, undergraduates will master the methodological and theoretical foundations of higher school pedagogy, learn how to use modern pedagogical technologies, plan and organize the processes of teaching and upbringing, master the communicative technologies of subject-subject interaction between a teacher and a student in the educational process of a university. Also, undergraduates study human resource management in educational organizations (using the example of a higher school).	3					Y					
4	Management Psychology	Management psychology is a branch of psychology that studies the psychological patterns of managerial activity. The main task of management psychology is to analyze the psychological conditions and features of management activities in order to improve the efficiency and quality of work in the management	3					V					

				I I				1		1
		system. Also, undergraduates will study education marketing,								
		human resource management in educational organizations,								
		information and communication technologies in the field of								
		education and educational process management (using the								
		example of higher education).								
		Cycle of basi								
		Elective co	omponent							
5	Algorithms	Modern problems of cryptography and information security. The	5	v		v	v			
	for	official link to the cryptosystem. Classical cryptosystems. The								
	cryptographic	main tasks of cryptanalysis. Stream encryption. Cryptosystems								
		with a public key. The use of mathematical modeling in								
		cryptography. Advantages and disadvantages of different systems.								
		Euler and Fermat theorems. Key management. A system that does								
		not have a key switch. Classification problems by prime factors.								
		Problems with the discrete logarithm. Problems with								
		cryptography. Information security systems, electronic signature								
		schemes, authentication and authentication protocols.								
6	Security of	Cloud computing, distributed data processing. Cloud deployment	5	v	v			v		
o .		models: public, private, hybrid clouds. IaaS, PaaS, and SaaS		*	'			,		
	systems and	cloud technology models. The use of virtualization tools,								
	cloud	virtualization technologies, data processing centers,								
		telecommunication networks. Features and characteristics of								
	teemiologies	cloud computing. Security of cloud technologies, sources of								
		threats in cloud computing. Standards in the field of cloud								
		security. Cloud computing security tools. Encryption, VPN								
		networks, authentication, user isolation.								
7	C	Magistracy. Modern cryptography and tasks related to the	5							
/			3			v	V		v	
	methods and means of	problems of information security. Formal definition of a								
		cryptosystem. Classical cryptosystems. The main tasks of								
		cryptanalysis. Stream encryption. Cryptosystems with a public								
	protection	key. Applications of mathematical modeling in cryptography.								
		Advantages and disadvantages of various systems. Euler and								
		Fermat theorems. Key management, a system without key								
		transfer. The problem of prime factorization. The problem of								
		discrete logarithm. The problem of cryptographic stability.								
		Information security systems, electronic signature schemes,								
		authentication and identification protocols.								
8		The course examines the protection against modification and	5			v			v	
	means of	control of the integrity of the software. Methods and means of								
		storing key information. Principles of multi-factor authentication.								
	the OS	Technical identification and authentication devices. Software and								


		hardware encryption tools. Ensuring security in Windows, Unix systems, familiarization with the internal organization of media.										
		Intrusion detection systems. The main components of the firewall architecture. Modern requirements for firewalls.										
9		Basics of network security. Integrated software monitoring and	5		v		v			v		
	security tools	protection against software corruption. Principles of multipath										
		authentication. Identification and authentication of technical										
		devices. Secure identification and authentication subsystems.										
		Identification and authentication of users using biometric devices. Software and hardware encryption. Security of network operating										
		systems. Security in Windows, Unix. Dirt detection systems. The										
		main components of the firewall architecture. Modern										
		requirements for firewalls.										
10	Python in	The course studies the general principles of working with data:	5	v	v							
	research	loading, receiving and processing unstructured data, receiving										
	activities	data via API, Visualization and publication of data, filtering,										
		transformation, analysis and interpretation of data using well-										
		known classification, clustering, regression models, etc. The										
		range of tasks covers optimization methods, stochastic modeling,										
		Gaussian modeling, partial differential equations, Navier-Stokes equation, thermal conductivity equations.										
		Cycle of profile disciplin	es Unive	rsity com	ponent							
						•						
11		Security aspects and criteria, security policy. Data security	5	v					\mathbf{v}			v
	U	threats. Database protection and security, data integrity and										
	of database	reliability. Methods and means of data protection and protection.										
	1	Develop a secure database. CASE-design tools. Database administration tools. Impressions as tools for improving data										
	security	security. The impact of cursors on database security. Transaction										
		management. Stored procedures. Triggers. Mandatory and										
		discretionary management of DBMS access. Role and reports.										
		DBMS monitoring and auditing. Cryptographic tools for database										
		protection. Data replication and recovery. Highly trained tools.										
12		The concept of information security systems. Standards of	5		v	v	v					
		information security systems. Select the object to organize the										
	security	system. Threat analysis and security software development.										
	systems	Administrative and procedural levels of information security.										
		Analysis and selection of information security methods. Provision and evaluation of facilities										
		Цикл профилиру			I			<u> </u>	<u> </u>	1	<u> </u>	
		Компонент	г по выбо	ppy								

1.0	D . 1 .	mi: 1: 1: 1: 1	_		1	ı	1				ı	x /
13		This discipline is aimed at studying the methods of information						V				v
	and data	retrieval and data mining. It's about how to find relevant										
	extraction	information and subsequently extract meaningful patterns from it.										
		While the basic theories and mathematical models of information										
		retrieval and data mining are covered, the discipline is primarily										
		focused on practical algorithms for indexing a text document,										
		relevance rating, use of web resources, text analytics, as well as										
		evaluating their performance. Practical search and intelligent										
		applications such as web search engines, personalization and										
		recommendation systems, business analytics and fraud detection										
		will also be covered.										
14	Information	Information security audit Information security management.	5			v			v			
	security audit	Information security audit. Basic terms, definitions, concepts and										
		principles in the field of information security audit. The main										
		directions of information security audit. Types and objectives of										
		the audit. The main stages of the security audit. A list of the										
		source data required for conducting a security audit. Assessment										
		of the current state of the information security system.										
		Assessment of the security level. Risk analysis, assessment of the										
		level of security, development of security policies and other										
		organizational and administrative documents for the protection of										
		information. International standards and best practices of OT										
		audit.										
15	Engineering	Engineering Information (FROM) Information. Carrying out the	5	V						v	v	
		necessary actions to protect information using active and passive										
		technical means. Technical means of information protection, their										
	information	classification. Physical means of protecting objects. Suitable tools										
		for searching and searching for information flows. Methods of										
		streaming audio information. Technical means for obtaining and										
		distributing information. Unauthorized audio information device.										
		Headphones for the phone. Electronic stethoscope. Optoelectronic										
		interception of sound signals using laser sensing of window										
		panes. Technical channel of information leakage by "high-										
		frequency overlay". Parametric technical channels of information										
		leakage.										
16	Intelligent	Models, goals, and means of cyberattack. Active protection is a	5		v		v			v		
	means of	method of preventing cybersecurity. Effective counteraction.										
	recognizing	Active protection components. Network prevention. Anomaly										
	and	analysis, advantages of active protection.										
	countering											
	cyber attacks											

17	Artificial	The purpose of artificial intelligence is to create technical systems	5		v						3.0
1 /	intelligence	capable of solving non-computational tasks and performing	3		•						Y
	interrigence	actions that require processing meaningful information and are									
		considered the prerogative of the human brain.									
18	C-1	The course is aimed at the study of digital evidence, methods of	5								
18	Cybercrime		3						V		
		searching, obtaining and securing such evidence, as well as the									
	forensics	analysis and investigation of events involving computer									
		information or a computer as a tool for committing a crime or									
		other digital evidence. The course examines typical models of									
		cybercriminals and their behavior, the main types of cyber									
		attacks, as well as methods of responding, investigating and									
		documenting cyber incidents.									
19	Natural	The course studies the theoretical and practical foundations of	5	v							v
	Language	natural language processing. The course covers the theoretical									
	Processing	aspects of NLP, including basic information from the field of									
		linguistics, and practical methods of text processing. Classical									
		algorithms for processing text information, such as regular									
		expressions, measuring distances, substitutions, searching for									
		strings and substrings, are considered. Linguistic trees. The body									
		of the text. Taxonomy. The models of Word2Vec, Text									
		Embedding, LSTM models of neural networks are considered.									
		The existing libraries of text information analysis are being									
		studied.									
20	Risk	Risk management in cybersecurity The program of the training	5					v		v	
	management	course "Risk management in cybersecurity" is aimed at studying									
	in	international and national standards of risk management in									
	cybersecurity	cybersecurity, methods for determining and managing risks,									
		practical application of standards and methods, studying									
		specialized software systems for risk assessment.									
21		Steganography is a method of transmitting or storing information,	5		v					v	
		taking into account the secrecy of the very fact of such									
	information	transmission (storage).									
	protection										
22	Wireless	Magistracy. Security technology for wireless networks and	5	1	v		 	v	v		
	network	mobile applications. Unified solutions. Classification of									
	protection	applications for mobile devices. Methods of scanning and testing									
	technologies	mobile applications. A comprehensive system for ensuring the									
		security of wireless networks. Analysis of the security of mobile									
		applications. Threats and security risks of wireless networks and									
		mobile applications. Wireless network security protocols. The									
		WEP encryption mechanism. Passive and active network attacks.									

		Authentication in wireless networks and mobile applications. Technologies of integrity and confidentiality of transmitted data. Deployment of wireless virtual networks. Tunneling. IPsec protocol. Intrusion detection systems in wireless networks and mobile applications, their characteristics.						
23	Big Data and data analysis	Introduction to data analysis. Algorithms of classical computer learning. Introduction to advanced training. Great data. A large number of structural and non-structural data processing technologies for obtaining results.	5		V	V		
24	Machine Learning & Deep Learning	The course is dedicated to deep learning models. As an area within machine learning, deep learning models illustrate a quantitative-qualitative transition. New models and their properties require separate study and practice of setting up metaparameters of such models. This course covers the basics of deep learning, neural networks, convolutional networks, RN, LSTM, Adam, Dropout, BatchNorm, Xavier/Hernandez initializations.	5		v	v		V
25	OLAP and data warehouses	OLAP (English online analytical processing, interactive analytical processing) is a data processing technology that consists in the preparation of summary (aggregated) information based on large data arrays structured according to a multidimensional principle. OLAP technology implementations are components of Business Intelligence class software solutions	5			V		V
26	Security Internet of things	The Internet of Things (IoT) is currently an extremely popular technology used and applied worldwide in many fields. Government, academia and industry are involved in various aspects of research, implementation, deployment and doing business with IoT. IoT cuts across different verticals of application areas, ranging from the civil and defense sectors. IoT security issues	5	v	V			

5. Curriculum of the educational program

AAP254	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	.5							5	
AAP255	Research work of a master's student, including internship and completion of a master's thesis	RWMS UC	14								14
		M-S	. Module	of final a	testation						
ECA205	Preparation and defense of a master's thesis	FA	12		acatation.						
	Total based on UNIVERSITY:		- (0)								12
	30.00.00.00.00.00.00.00.00.00.00.00.00.0							25	35	30	30
								6)	60	
	Number of credity for the aut	an a sales									
	Number of credits for the entire period of study Cycles of disciplines Credits										
Cycle code											
				university composeen (UC)	choice (CCH)	Tetal					
BD	Cycle of basic disciplines	-		1	100	4.0					
PD	Cycle of profile disciplines			20	35	35 49					
	Total for theoretical tra	ining:	0	34	50	84	-				
	ERWM				20	24					
- FA	Final attestation	1000	12			12					
	TO	TAL:	12	34	50	120					
ecision of the	or Academic Affairs nor July		K.Satpaye	Protocol 2			Zhautikov B Uskenbayuv	ka. a R.K.			
epartment H		11.11	- 13R AH				iatybaldieva	R.Zh.			